(19) United States
 (54) METHOD FOR STORING INFORMATION IN DNA

(75)

Inventors: Lalit M. Bharadwaj, Chandigarh (IN); Awdhesh Kumar Shukla, Chandigarh (IN); Amol P. Bhondekar, Chandigarh (IN); Rakesh Kumar, Chandigarh (IN); Ram Prakash Bajpai, Chandigarh (IN)

Correspondence Address:
 LADAS \& PARRY
 26 WEST 61ST STREET
 NEW YORK, NY 10023 (US)

(73) Assignee: COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH
(21) Appl. No.: $\mathbf{1 0 / 8 1 2 , 8 3 9}$
(22) Filed:

Mar. 30, 2004

Related U.S. Application Data

(60) Provisional application No. 60/459,140, filed on Mar. 31, 2003.

Publication Classification

Int. Cl. ${ }^{7}$
C12Q 1/68; G06F 19/00; G01N 33/48; G01N 33/50
(52) U.S. Cl. 435/6; 702/20

ABSTRACT

DNA is a natural molecular level storage device. Molecular storage devices use each molecule or part of it for storing a character. Thus it is possible to store information million of times than presently used storage devices. For example a JPEG image (i.e. flag of India) having file size of 1981 Bytes can be encrypted using 7924 DNA bases which occupies about 2694.16 nanometers In other words flag of India can be encrypted 8.07×10^{5} times in human genome which comprises 6.4×10^{9} DNA bases and occupy a tiny volume of about $0.02 \mu \mathrm{~m}^{3}$. A method for storing information in DNA has been developed which includes software and a set of schemes to encrypt, store and decrypt information in terms of DNA bases. The main advantages of the present method over exiting art is that it addresses complete set of extended ASCII characters set and thereby, encryption of all kind of digital information (text, image, audio etc.). First of all, information is, encrypted along with carefully designed sequences known as header and tail primers at both the ends of actual encrypted information. This encrypted sequence is then synthesized and mixed up with the enormous complex denatured DNA strands of genomic DNA of human or other organism.

Fig. 1a. Single Segment

Fig. 2. Encryption of extended ASCII character set in terms of DNA bases

Fig 3．Encryption Key．ASCII characters in terms of DNA strands

Dec	$\begin{array}{\|l} \mathrm{A} \\ \mathrm{~S} \\ \mathrm{C} \\ \mathrm{I} \end{array}$	$\begin{aligned} & \text { DNA } \\ & \text { CODE } \end{aligned}$	Dec	$\begin{array}{\|c\|} \hline A \\ S \\ C \\ \hline \mathbf{n} \\ \hline \end{array}$	$\begin{aligned} & \text { DNA } \\ & \text { CODE } \end{aligned}$	Dec	A	DNA CODB	Dee	$\begin{array}{\|c\|} \hline A \\ S \\ C \\ \mathbf{C} \\ \hline \end{array}$	DNA CDDE	Dec	$\begin{array}{\|c} \text { A } \\ S \\ C \\ \text { III } \\ \hline \end{array}$	$\begin{aligned} & \text { DNA } \\ & \text { CODE } \end{aligned}$	Dec	$\left\lvert\, \begin{array}{\|c\|} \hline \mathbf{A} \\ \mathbf{s} \\ \mathbf{C} \\ \mathbf{n} \end{array}\right.$	$\begin{aligned} & \text { DNA } \\ & \text { CODE } \end{aligned}$
0		ATCG	44		ACCA	88	X	TTAA	152	\％	CcTA	176	－	CCCA	220	凹	GGGT
1	回	ATGG	45	－	AGAA	89	Y	TITA	139	．．	CGCA	177	\pm	CCGA	221	X	CGAT
2	0	ATAC	46	．	AGTA	90	Z	TTCA	134	t	CGGA	178	2	CCAA	220	b	GGTT
3	0	ATTG	47	1	ACCA	91	1	ITGA	135	\pm	CCAA	179	9	CCTA	223	18	GGCT
4	0	ATTA	48	0	AACA	92	，	TTGT	136	－	CGAT	180	－	CCTT	224	䫆	GACI
5	0	ATCA	49	1	AAGA	93	1	TTAT	197	\％	CGIT	181	4	CCCI	225	白	GAGT
6	O	ATCA	50	2	AAAA	94	ค	TITT	198	5	CGCT	182	1	CCGT	226	a	GAAT
7		ATAA	51	3	AATA	95		TTCT	139	－	CGGT	183	－	CCAT	227	a	GATT
8	\square	ATAT	52	4	AATT	96		TCCT	140	G	CGGC	184		CCAC	228	14	GATC
9		ATIT	53	5	AACT	97	S	TCGT	141	0	CGAC	185	1	CCTC	229	$\underline{1}$	CACC
10		ATCT	54	6	AAGT	98	b	TCAT	242	0	CGTC	186	$\stackrel{ }{-}$	CCCC	230	因	GAGC
11		ATCT	55	7	AAAT	99	c	TCTT	143	0	CGCC	187	\pm	CCGC	231	5	GAAC
12		ATGC	56	8	AAAC	100	d	TCTC	144	0.	CACC	188	$14 /$	CCGG	232	e	CAAC
13		ATAC	57	9	AATC	101	e	TCCC	145		CAGC	189	${ }^{142}$	CCAG	233	6	GATG
14		ATTC	58	：	AACC	102	f	TCGC	146	＇	CAAC	190	3	CCTG	234	e	GACC
15	0	ATCC	59	－	AAGC	108	g	TCAC	147	＂	CATC	191	1	CCCC	235	B	GACC
16	0	ACCC	60	$<$	AAGG	104	h	TCAG	148	＂	CATG	192	A	GCCG	236	3	GAGA
17	\square	ACGC	61	＝	AAAG	105	1	TCTG	149	－	CACG	193	A	GCGG	237	1	GAAA
28	0	ACAC	62	$>$	AATC	106	i	TCCS	150	－	CAGC	194	A	CCAC	288	1	CATA
19	0	$A C A C$	63	7	AACC	107	$\underline{1}$	TCCG	151		CAAC	195	AA	CCTC	239	1	CACA
20	\square	ACTG	64	12	TACC	108	1	TCGA	252		CAAA	196	A	CCTA	240	O	GICA
21	0	ACCG	65	A	TAGC	109	m	TCAA	153	－2	CATA	197	A	CCCA	241	这	CTCA
22	\square	ACCC	66	B	TAAG	110	n	TCIA	154	\％	CACA	198	A	GCGA	242	0	GTAA
23	0	ACAG	67	C	TATG	111	\bigcirc	TCCA	155	3	CAGA	199.	C	GCAA	243	6	GTTA
24	\square	ACAA	68	D	TATA	112	p	TGCA	156	∞	CAGI	200	E	CCAT	244	0	GITT
25	\square	ACIA	69	E	TACA	113	1	TGGA	157	\square	CAAT	201	E	CCIT	245	6	GTCT
26	0	ACCA	70	F	TAGA	114	${ }^{1}$	TGAA	158	\square	CATP	202	E	GCCT	246	0	GTGT
27	0	ACCA	71	G	TAAA	115	－	TOTA	259	$\overline{1}$	CACT	203	E	GCGT	247	＋	GTAT
28	0	ACGT	72	H	TAAT	116	t	TGTT	160		CTCT	204	1	GCGC	248	0	GTAC
29	0	ACAT	73	1	TATT	117.	1	TGCT	161	i	CTG＇	205	I	GCAC	249	$\underline{1}$	GTTC
30		ACTT	74	1	TACT	118	v	TCCT	162	4	CTAT	206	1	CCTC	250	$\underline{4}$	CTCC
31		ACCT	75	K	TAGT	119	w	TGAT	163	E	CIIT	207	1	GCCC	251	0	GTGC
32		AGCT	76	L	TAGC	120	x	TGAC	164	0	CTTC	208	Đ	GGCC	252	\＃	GTGG
33	！	AGGT	77	M	TAAC	121	y	TGTC	165	Y	CTCC	209	N	GCGC	253	y	CTAG
34	\cdots	AGAT	78	N	TATC	122	2	TGCC	166	II	CTGC	210	ס	GGAC	254	1	GITG
35	\＃	AGTT	79	0	TACC	123	1	TGGC	167	5	CTAC	211	O	GGTC	255	1	GICG
36	\＄	AGTC	80	P	TICC	124	1	TGGC	168	\cdots	CTAG	212	O	GGTG			
37	\％	AGCC	81	Q	TIGC	125	1	TGAG	169	©	CTI＇	213	0	GGCG			
38	8	AGGC	82	R	TTAC	126	\sim	TGTG	170	－	CTCG	214	0	GGGG			
39	${ }^{-}$	AGAC	83	S	TTTC	127	\square	TGCG	171	α	CTGG	215	\times	CGAG			
40	（	AGAG	84	T	TTIG	128	D	CGCG	172	\bigcirc	CTGA	216	\square	GCAA			
41	$)$	AGIG	85	U	TICG	129	0	CCGG	173	－	CTAA	217	0	CGTA			
42	－	AGOG	86	V	TTGG	130		CGAG	174	10	CTTA	218	U	CCCA			
43	＋	ACCG	87		TrAC	131	1	CGTG	175	［1］	CTCA	219	0	GGGA			

Fig.4. Process sheet for encryption \& storage

Fig.5. Process summary

METHOD FOR STORING INFORMATION IN DNA

FIELD OF THE INVENTION

[0001] The present invention relates to a method for storing information in DNA The method of invention comprises storing information in DNA. The present invention addresses storage for all kind of digital information whether it is a text file, an image file or an audio file. Large sequences are divided into multiple segments.

BACKGROUND OF THE INVENTION

[0002] DNA is the best molecular electronic device ever produced on the earth because DNA can store, process and provide information for growth and maintenance of living system. AU living species are as a result of single cell produced during reproduction. In most of the cases this single cell does not have most of the materials required for fabricating a living system but contains all the information and processing capability to fabricate living spaces by taking materials from environment, for example, fabrication of baby from Zygote which contains rearranged DNA sequences of parents. DNA is ready to use nanowire of 2 nm and can be synthesized in any sequence of four bases i.e. ATGC. DNA of every living organism (micro/macro) consist of large number of DNA segments where each segment represents a processor to execute a particular biological process for growth and maintaining life. Other important characteristics of DNA which makes it material of choice for future molecular devices are: DNA the building block of life, can store information for billion of years. The tremendous information storage capacity of DNA can be imagined from the fact that 1 gram of DNA contains as much information as 1 trillion CD's ${ }^{1}$ four bases ($\mathrm{A}, \mathrm{T}, \mathrm{G}, \mathrm{C}$) instead of 0 and 1 , extremely energy efficient (10^{19} operations per joule), synthesis of any imaginable sequence is possible and semiconductor are approaching limit.
[0003] Clelland et al, 1999[2], and Bancroft, et al. 2001 [3][U.S. Pat. No. 6,312,911], have developed the DNA based steganographic technique for sending the secret messages. Although their prime objective was steganography (the art of information hiding), they used. DNA as storage an transmission device for secret message. They encrypted the plaintext message into the DNA sequences and retrieved the message using the encryption/decryption key. They used three DNA bases for representing a single alphanumeric character, as DNA has 4 bases (A, T, C, G) so a maximum of $64(4 \times 4 \times 4)$ ASCII character can be formed using this scheme. Whereas, a total of 256 extended ASCII characters are required to represent complete set of digital information. Hence, Clelland's scheme cannot be used to address complete set of digital information and has limited scope.

OBJECTS OF THE INVENTION

[0004] The main object of the present invention is to develop a comprehensive DNA based information storage technique.
[0005] Another object of the present invention is to encrypt complete extended ASCII character set in terms of minimum number of DNA bases.
[0006] Another object of the present invention is to develop software to encrypt/decrypt data in terms DNA bases.
[0007] Yet another object of the present invention is to design suitable primers to be flanked at both ends of the encrypted and synthesized information.

SUMMARY OF THE INVENTION

[0008] The present invention provides a method for storing information in DNA The method of invention comprises storing information in DNA. The present invention addresses storage for all kind of digital information whether it is a text file, an image file or an audio file. Large sequences are divided into multiple segments

BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS

[0009] FIG. 1 a, Information storage in DNA. Structure of prototypical single segment information storage in DNA strand.
[0010] FIG. 1b. Information storage in DNA. Structure of prototypical multi segment information storage in DNA strand.
[0011] FIG. 2. Encryption of extended ASCII character set in terms of DNA bases
[0012] FIG. 3. Encryption Key. Extended ASCII characters in terms of DNA strands
[0013] FIG. 4. Process sheet for encryption \& storage
[0014] FIG. 5. Process summary

DETAILED DESCRIPTION OF THE INVENTION

[0015] The present invention provides a method for storing information in DNA. The method of invention comprises storing information in DNA. The present invention addresses storage for all kind of digital information whether it is a text file, an image file or an audio file. Large sequences are divided into multiple segments.
[0016] The method enables the storage of information in DNA. In another embodiment a software based on the above method enables all 256 Extended ASCII characters to be defined in terms of DNA sequences. The basic concept used is to take minimum number of bases to define each Extended ASCII character. With simple permutation we have 4 sequences combinations with one base Le. A, T, G, C. Similarly, with 2 bases we have $4 \times 4=16$ different sequences, with three bases we get $4 \times 4 \times 4=64$ distinct sequences and flour bases give $4 \times 4 \times 4 \times 4=56$ distinct sequences. Therefore, with a set of 4 bases, complete extended ASCII set has been encoded. Software named as "DNASTORE" has been developed in Visual Basic 6.0 for encryption and decryption of digital information in terms of DNA bases. Using DNASTORE complete extended ASCII character set can be encoded 256 different ways.
[0017] In yet another embodiment in our scheme, plain text/image or any digital information is encrypted in terms of DNA sequences using encryption key (software). If the information overflows the limits i.e. it cannot be synthesized in a single piece then it is encrypted and fragmented in a number of segments. Synthesis of encrypted sequence(s) is carried out using DNA synthesizer.
[0018] In yet another embodiment a fixed number of different DNA primers sequence have been designed and assigned a number, which resembles the segment position it represents e.g. segment 1 , segment $2 \ldots$ segment n. These are called as header primers. Two tail primers have also been designed one resembles continuation and other resembles termination segment.
[0019] In yet another embodiment the DNA segment(s) is/are flanked by known PCR primers [as described earlier] at both the ends i.e. header primers are attached at the beginning of segment and tail primers are attached at the end of the segment. If there is only one segment, at the beginning it is, flanked by header primer number 1 and at the end it is flanked by termination tail primer. However, if there are more than one segments, each segment would be attached with header primers numbered as $1,2,3 \ldots$ n respectively, at the end these would be attached with a continuation tail primer except for last segment which would be attached with a termination tail primer.
[0020] The SM DNA is then mixed with the enormous complex denatured DNA strands of genomic DNA of human or other organism. As the human genome contains about 3×10^{9} nucleotide pairs, fragmented \& denatured human DNA provides a very complex background for storing the encrypted DNA. The DNA can be stored and transported on paper, cloths, buttons etc.
[0021] In still another embodiment only a recipient knowing the sequences of both the primers [starting and tail] would be able to extract the message, using PCR to isolate \& amplify the encrypted DNA strand. Isolated and amplified DNA can then be sequenced using automated DNA sequencer. The DNA sequence obtained can then be converted into digital message using encryption/decryption key (software key).
[0022] In yet another embodiment the key is helpful in the secret \& secure transfer of information particularly for spying and military purposes. It may also be helpful in anti-theft, anti-counterfeiting product authentication, copyright infringements etc.

TABLE 1

| | Comparison of present art with existing art | |
| :--- | :--- | :--- | :--- |
| | | |
| S. | Existing art | |

EXAMPLE 1

[0023] Encryption and decryption of a textual message "CSHU" in terms of DNA bases may be defined as
[0024] a) Generation of an array of 256 elements (unique abase per character i.e. ATGC, ATGA,

ATGT, ATGG). These elements represent complete extended ASCII character set values.
[0025] b) The input information is then encrypted character-by-character using array generated in step 1. The basis is ASCII values of each character is matched with the element no. of the array of step 1.
[0026] Encryption of the text "CSIR" in terms of DNA bases may be:

[0027] TATGTTTCTATTTTAC where

[0028] C is represented by DNA sequence TATG
[0029] S is represented by DNA sequence TTTC
[0030] I is represented by DNA sequence TATT
[0031] R is represented by DNA sequence TTAC
[0032] c) If the information overflows the limits i.e. it cannot be synthesized in a single piece or because of any other problem, then the encrypted sequence is fragmented in a number segments.
[0033] d) Encrypted segment(s) is/are then flanked on each side with header and tail primers.
[0034] e) Synthesis of encrypted sequence(s) is then carried out using DNA synthesizer.
[0035] f) The synthesized DNA segment(s) is/are then be kept separately or can be mixed up with the enormous complex denatured DNA strands of genomic DNA of human or other organism. As the human genome contains about 3×10^{9} nucleotide pairs, fragmented \& denatured human DNA provides a very complex background for storing encrypted DNA.
[0036] g) The encrypted DNA can then be transported on paper, cloths, buttons or through any other medium.
[0037] Isolation decryption of above encrypted DNA sequence

TATGTTTCTATTTTAC:

[0038] a) Isolation and amplification of encrypted DNA is done using known primers flanked at each end by PCR method.
[0039] b) Retrieved SM DNA is sequenced using DNA sequencer
[0040] c) Obtained sequence is interpreted (integrated if multi-segment before interpretation) using DNASTORE software. The basis for retrieval is a string of 4-bases each at a time is taken and matched with array as generated in step 1 of encryption and
storage. The element number of matching value is taken and converted to its ASCII equivalent
[0041] If the retrieved sequence is TATGTTTCTATTTTAC. The Decryption would be:
[0042] first 4-bases i.e. "TATG" would be in the array storage and encryption $67=\mathrm{C}$
[0043] next 4-bases i.e. "TTTC" would be in the array of storage and encryption $83=$ S
[0044] next 4-bases i.e. "TATT" would be in the array storage and encryption 73=I
[0045] next abases i.e. "TTAC" would be in the array of encryption $67=\mathrm{R}$
[0046] Integration of above decrypted values in the same sequence as retrieved is "CSIR".

EXAMPLE 2
[0047] Some examples of DNA encryption for textual data

Digital Information Encrypted DNA sequence
WELCOME TTAGTACATAGCTATGTACCTAACTACA

WORLD PEACE TTAGTACCTTACTAGCTATAAGCTTTCCTAC ataggtatgtaca
india tattratctatatattitagg
CSIR tatgtttctattitac
CSIO tatGTTTCTATTTACC

EXAMPLE 3
[0048] A JPEG image encrypted in term of DNA bases

Digital Information

Encrypted DNA sequence

TAAATATTTAGAAAACAATCTCGTGGCGATCGCGC
CATCGGCTAACCTATCGATCGCTGGTCGCGTATCAA CAATCGTCGGTCGGTCGCGCCCTACGGGCTCTTCGA ACCCCGTAGGCGACACGGCGCGGCGGATGATTGTC GCCTTGCTACCCGTGGTGCGCCCAGACCTTCGACGC TCCTGGTACCTGCGCCTCATCGTTATCTTTGTTGGA GTGCAAGATGGAGAGTTTCCCGGACGGGTAGCAAG CCTGCGTAATATCTCCAAATGTCCAAAGCTTATTGT TTTCAATAACGTGATCCTTTACCTGCACATTAGTAT TATCACCAGCGTGCACCCATGCGGGCGCCAACCTT GCTGGACTTCGACGCCGCTGTCGTTGCCCTCTGAGT GAATGATTGTGCCCACTGTGGTGGGGCGCCTAGTC GGTCGGTCGAGGTGTTCATTAATGGATCGATCGAC 6

CTATCGAGGAATCGATCGATCGATCGGGCGATCGC GCCATCGATCGATCAGTCGTCCTACGCCGGCTCTCT CTGCATTTCAGCTCGCTTATCGAGAGGCCTGTGCAA GGAGCCCTGTTACATTGGGCTATCTAAGACATGGG GACAGTCGGCCGACAGAGTATAATAGGAACCACGC CTAATGGATAACAGCTTTCGAAACCCACTCCAGAG CCTGTTTACTCTAATTGGCTCCGGGGCTGATGGTGA GGGCTGTGAACCCGGACTCCCAGCCTAGGGAGTAC AGACCATGATCCCTATGCCGGATTAGCCCTAGGCT GTCACACTAAGCTATCCTCAGCGTGAGCGTGTCCG GACTTCGCAGGCTGTGCGTCTTGAGTGCGCGAGTG GACGGGCGTGCGGATCCGCGCACGAACGCTTCGTC GTTCGGTCGTCTTCACGACCGCCCAACTTTCCAGCC ATCCAGGTAGCCACGCAAGCACATACACATACAGA CATXTTATAATCCACTCTATTATCCAATCTTTCTGCT GATCTGTCTACCTCGTAGGCTCCCTGGCTTAAGTGC TAACTCACCAAAGTCCCGACCTACCAACCCTCCGTC TTACCACCCTCCTCGCCGCCCGGCTGCCCTGCCCGC TATGCGGGCAGCATTGCTAGCCACACAGCAAGCAT CAGGGCCTGCGTCAACGCACGCTCCGTCGGCCGGG CCGCTGGTCGGTGCGGAGGGGGGAGCGAGGGTAG GCATGTGGGGTGGATCGCGCTTGGACTCCTCGGCT GATTTGCTGACCGAGCCGTAGAATGATGCTCAGAA GGAGATCGAGATAGACACGATACTTATCAGTCTGT GTGTATGTACGTTCGTCCGTGCGTGGGTAGGTTGGT CGATCGATTGATCTACGTTAATCCCACTCTGCGGCG TGACATAATGAATTACCCGCCGCCCACTGTGCTGCG AAACCCAGTTTACTCAGTTAATCCGACTATGCCACG GTACAAAATATCCGGGGTGCATCCGACTTTGCAAA TGAATCTAAAGCGCTACGTTATTGTAAAGATCGTA ATTAACGAAGCGGTCGTTAATTAATCTGAGGTGCA GATGAATACATTTAAACCATGCAGTTATTCATCAGT CGCATCGCAAACTTGTAGACGCTGAATATTAGGTA TGATTAATGATACGCGTGATGACAATTACGTGTTTA

AGCGCAATTAATTCTGGTAGCGTTATGCCTGTCAAG GCGGTCCTACAACTAGGTTCGATCCTTACGACTGGA AGATGGCTCTACACACGGACCCCCCAAACCAATTA TAGTTACCTAGTCCTTAAAAACCATACTAGTTTGGC TTTATTGATACTAAGACTAAGCTTACGTCCTGACTC GCGATTAATGGACACACGTTTCCTGACAAGCTCCTC GGGGGCCATATATATGCCTGACGCCAGAAACTGGT CTCATTCTCGATATGAAGCGACCCAAAGCGCGGTG TATCGTTGTCGAATCCAACTAAGATGCATCGCGCGC GGCGGATCAATCTTACGAGACTCAGGTACTAGTGG TATCGTGGCTGCCTTGTGACGCTTAAATCGTACTTC GTCGCGATTGATTGTATTATAAACAATCAGCAAATT AAATCGATGGCGGACTTTATAAAGCTAAACTACGC CTTTAAGTTACGCGCTGTGAGCAGCTGAGGCCGGTT CCTTAAGTTCCATACATTCTATCAATAGCGCTTCCT GCCTAGGTATGGGCTCTAGGGCTATCTTGCTAAAGT TGACTCAGAGAGAATTACCTCGGAATAAAACAACA CGCGGCAGTCAGATTTTGTCACTATTTTTACGTAAC TAGGGTGATCTCCGGAATGTCAACTCCGGGCCCCC ACACGATGGTGGAGATCTCCTCGCCCGTGGGCTTCT GGACTAGACGTTAGGGCATGCACATACGTTGACGA AATTGTTACGCGGAGACGATAGAATTTATAACCTTT CCACCATCTAGTATGAGGGATTCATACGCTGCCCTT CTCCTAATAGGAACGTACACTAAATTAATTGCCGTG CTACCAATGCGACTACTTTGGGATAACGGCCTGCG GTTGTCGTCGGGTGAACTATCCTATCGTTCGACTCT ATAGCAAGGCTTATCGTGCTAACTAATTTACATAGT AGGACTATCGCCACACGGGATGCACATACCCGACT ATCGGGTCCCAGAGACTACGTTGAGGAAAGCCAGG CTTAGTTTTACACATTAACCGATGGCGTGACGGGG ACTTTGTCGTCGGTACATAATCGTCAGGTCATCAAT TCCTGCTGATATGGCGAAATTGCTGAGTATCTCTAT GGACTAACAACTGCTAGGTGCTCTGGAGCCGACCG CCGCGACATACAAGATAGACACGTCTAAACAGCTC
GTTTTCATCAACACCATCGTGCATGCCGATCGACGT GGCACAAACAAATTGAATAGAAGGCATACTATATC GTCTACTTGGYATGGGGCACCTTGCCGTCCAAAACC GTTCGAAAAAAGATCTGTTTCTAATTCATCGTCAGT CGATTTGAAATTCTCTCCCCATACGCATGGACGCAA TAAGTATCGATTGGACACCTCCTCCCAGGTTCAATG TGAAGTGACATCGCAACATGAACCCCGCGGGGACA GAATGCAGTCTTCCCTGCTTAATCTCGTTGGGTACA GCTGAAATGCAGTCAGGCGCGGATGGGGGCCCCTC ACGGGATATGGTGATAATGTTTACTAGCTITACACG TTTCTAGCAGAATTGCGAAATGACGATAGCCTTCCA CGCATATGTCCTTGCCTCTCACATCCGAATTGGCGA TGGATGTCTCTAAATGAATTCTTATGGTCGCGACTT TAACGCTTCCAAGATAACAACAGATGGTGCTCCTG AATCACATCTCCTTTGATCTTGACATGGTTCCACCC TGTTCCCCGGGCCAACCCGTTAAGCCTTACTATGTG ATTCGACCTAATATGGATAGTCCATCCGGCCATCCG TGTACAATAATCCACAGACTCTGTAATTTAGAATTA CATGCACTCCTCTCATCGTATCGGCCTAATGCTAGG ATCGGGTGCGCGATTATACGGCAACTCTGTCGATG GCCTAGGTTGAAGGGGGATCAACACGGTGTACATA GGCCCTACAGCTGACGTTCACGTATGATGAATGCTT CCTCAATGTAATGCTCGAATCGAGAATTCTCAGTCT TAAGGGCAGCCATCGGAGCACGTGGCGCGGCAATA TTGATTATGACAGAGCTATACAGCCCACTCGGGCG ATAGACTGCTGAGACGCAAACGTGATATTAATTAC GATGGCTAGCATTCGACATATCATAATCAGATATTG GGTTTAGGACCTTTATCGCAGTATTAGTACGATTTG GTGCTGTGCGAAATCTTATGTGCGCGTGCGAAACA ATATATTGTTCGAAGTGATATGGGATAGGTCAGTGT CATATAATGTAAATCGGTTCGTCTGACGCGATTTAA GGCTCACATTGTTATCGCTAATCGGGATGAACGGCT CAAGTGCAGCATGGCACCAAGATTCCGAGGGCAAA CGCCGCACAGTGAGGTTTGGCTCTCCCCTCTAATAT
CTTACACGTTTGTGGGGATTATAGGGATCACATGGCC ACGGCCTGTAATATTGTCATGTAGCCCGGATGATAC CGGAATACTAAAATTGGAGGGGTTCTAGGTCATGC TAACTGCTCGGGGCTCATGGAGTTGTAGAGTTATCA ACAGGATCTCGGAATTCCCGTAAGCGGGATCTCCTT GCCGATAAGTTTGTGCTGCTGCCCGTCTTCGCGCCG GAACGCGCTTCCAAATTCTCCCTACTAACGCATGCT GATGCACCATTGGAGCATTCTGGGATGGGCGITTAT CGAAACGAGTGTTTGTCTATAATGCATGACGAGGT CTCTGCTGGGTAGAATTGGTGATTTGGAAGCGATA CGGGTTATAGTCTCACGTACTGATGGACTAGTATGC GTGAAGGAATCGAATACTTCGACACGATGACGTAG GGAGCCACGCGATCAAGGACTGCCCAGTGGTCTAC TATCTATCTTCAACAGATTGAGGGGGAGCGGTGCC GCTGATTTAATTTTAGCATCGGTCGCTGGTTAACTT TTAGTATCGCGCCTTTAAAGAATCTAATCTCCGTTA GTGTCGGGTTGATTTTCTGCGAAATAGAACTAATTC AATTGCTTATCTGCTTGATCGATTCGGAAGCCAGGG TGGGTAGGGTAGTTACGTACGCCTGAATCTGAACC ATCAGTCGTAATGAATTACTGAAGACGCGCGATGC CTGGATAAAATTATCGCCTATGTCCCAACTAATGGC ACGACAGGCTCAGAGCATGCTACTGTGTAGTGAGA TCCGCTTATCGCCCCATTCGTGGTCGCGTTATGCCA CTGAGTAACAAGTGATGTCCAGTGTCTAATACGAC CGCTCGGGTCGATGGTCAAGCGGCACAGTGACATT AACTTTTGCTTTCACATTGAACAAATTCTCCCACTT CAGCACATGTACCCCCTGCTGCATACAGACCAGGT CTTTTGTCCACACCTTGCACGGGTGCCTGAATGCCT TTCCGCTGGCCTAAGCCAGTGACGTGAATGTAAAG AGCGCTCGCACTGTAGTCATGGAGAATTATAATCG ATAGATAAATACGTGGCGCACCACCCCAACATCCT CGCGGGCTGTTACTAGAAATTGTGTATACCGTGGG GGTGATTAAAAAATGGTGAGACGTGCTGTATGGTC TTTGTGATCTCTGCTACTATTGGGTGCTGCATAAAT
CGTACCTCCAACTTGAGGCATCATAGCTACGGAAC CCGTAAAATTGGTCATATACGCAAACACAACAGTA AGTAGGTGGAGCCGAAGTGCTCTCGTGGCCGAAGA CAACAACCTTTGCCCATGCCTTAAAGACTGCGTGAT AACCGTCTTCCCATCAGGAGGTGAAGGCGATATGG TAATCTATAGGTATTGATGGCAAGAGGTCGGAACC CAGCTTACTCGATAGCGTTGTCGATCGCGCTTCCTG TGCTCCTTCCTACAAAGTGGGATAGCATCATAGAC .AGGCATCCGGGTCCAATCGCCGAACGCGTCACGCA TCGCATGATTAATTACAGTGTCGCATTACATCTAGT ATGTATTAGGTGGGCACCGCGGTACAGCATGGACA GGCGCTCACGGACACAAAAACGCGTCAACAAAAGT TAGGTATGGGTGGCGCCAGGTGAAAACGCCAGCTC TGCTATGGTCCTAAGTAATTGCAGCATGTCTTGAGA TCTCATAGCTACCGTCTTCAGAACGATATTAGCTAA CTTTCCCTTCCGTCTCATTACTTATGCGGGCTTCATC GCGGTTACCGGCTGGTAAGATACGTAAGCTACACT AGTAAGCATACTGCAGGTATGAGCCGATCCTGCAA ITACCCATATTGGTTTTTGTATTTACACGTATGGCG ATTACACTTCTTAAACTAGAACTCGTTTACTAATTC TTCGTTCATACTCATGGCAATAGCATGATCTCGTAT TACCATGTTATACGTAGTCATAGTGTGCCAACAGTA CGTTAACCTACAATGCTCCACGCCGACCTTGTAGAA CAGCATGATACTATATACCCGGGCATCGCGCACCG ATAACTGCAGATCATGGAATGACCGCTCTACGTGG ATTTAACTCGGGTGGCCCTATAGATAAATATTCTTA CCACCGCCCTGGGATATATAGGCCGTCAGCACGTTT ATGTCCTAGTACGCAGTACGCGCCTATTAATATAAC AGCTGTCAGTAAGGGTCCAGAATTCTAGGGCCGAT GAATTACAAGCAGGTGAATAGATACGATTGGGATA TTATCACAACAACTCGCGAATGGATTATCAGTACG AGCCACGGCCCAGCACATTATTCACCAACGGGATT AGGTGACGCCAGTGCGTGCTGCTACTACAATGCAT CGCGGGTGTTGACGGTTAAGGTAGCTCGGGCGCGA
TAGATGATACTGGCCCGAGACCAGTITCTCTATATT AACCTAGTAAGACAGGCCTGGCCCGGAAACCGTTT CTGTACCCCGACCTAGTATAAGACTACTGGGCCGCT AGCGGACTATTGACAAATCGCGCGTAGAAAATGCC TGGGCCGTCTGCCGTCGGTTTCTTTAGCTATACCTT GTAATTAAATACTGGACCAACCACAGTTTCTTCAGA GTAACCTTGTACTTTAGGCCTTTACATCGTCCTCCTT CTCCAACACGACCTTGTAGCTCACTACTGGTCCACA GGCAGTTTCTTCAGCACCAGCTTGTATCTGATGCCT GGTCCATTGTCCCCTTCTCCAATCGTAGCTTGTTCC CGAATACTGGTGCTATGCCTAATTCTAGTAGATAAC CTCGTTACCAAGCTCGTTTGCTTCAAAAGTCTCTTG TTCCCGACGACGTAGCCAATAGCGGGCGCTCGTTC AGTCTCTCGAGCTCTCCAGCGTTGGCCATGCCTTTC GCTAGTCCGCCCTCTGGTCCTATACCTGGTTCCCCC GAGCGGGGGCCAACACACACGCTGCTCTCAAAGCT GGTTCAGGAGCGCTGGACCCTTCCAAGTCTCTAATG CAGTCTCTAGTTGAGATTTACTGGAGCCATGCTCCC CTCTTATGACAACTGAGGTTATGTTAGCCTGGAGCT TAGATACCCTCTCACGCGCCCTGACGTTCTATTGTA GTGGAACTACATTCCCGTCCCACGATAACTGACGTC GTACTCGCGTGGAACACTAGTACCGTCCGACACCG GCGGATGTCTTAGTTTAGTGGTACTTGTCGCCCTTC CAACAAAAGAAGACGTCTCAATAGCGTGGTACCGT TTTTCCGTCCTACTCTCACGGAGATCACTATGTAGT TTCAGCGTCAGGGTGTCCTTTAAAACATAGAATCCG TTAGGAGGTTTAGGGGCCCCCCGTCCCTCTCACGAC GAAATAATAAATAGGGGGGAGCTCGGACCCGTCCG TCATACCAGAGAATCTAAGGGCTGGGGGAGGATTA GACCGTCCATCCTGTCAAAGGATGCACGTGCAGAG GAAGAGTACACCCATCCCAGCGAAAAGTCTATCCT CATCCTGGGGGTCCTGAAAACCATCCTCTGTCTGAG AGTATGTTGAGGAGCGGGATGATGGCGACCCTCCC CAACCGGGGCCCTCTGGTCCGCCTATAGTTTCAGAG
ATGAATTAGCTAAGGTTGTAGCTTATTTTCCATAGG GTTTTGCTCCGGACCATCCGGTCGTGTAGCGCGATT GACTTGCCGGGTTGTGTCCCCGTATCCAGGTCACGA CCTCATGGGGAACTAGTGGCTGTCCGGCAGTATCCT GGTACGCACCTCATGTGGTATGCGTGGCTGTTGGTC CGTATATGGACCTATATATGGATCGAAGC
[0049] In example 2, a JPEG image if Indian Flag having file size of 1981 Bytes have been encrypted in terms of DNA bases. A total of 7924 DNA bases (4-base/Byte) are required to encrypt the complete image. Since the sequence is large, fragmenting the sequence into smaller segments is required.

REFERENCES

[0050] 1. Lalit M Bharadwaj*, Amol P Bhondekar, Awdbesh K. Shukla, Vijayender Bhalla and R P Bajpai.

DNA-Based High-Density Memory Devices And Biomolecular Electronics At CSIO. Proc. SPIE: vol.4937, pp 319-325 (2002).
[0051] 1. Clelland, C. T., Risea, V. \& Bancroft, C. Hiding messages in DNA microdots. Nature. 399, 533-534(1999).
[0052] 2. Bancroft, et al. DNA-based steganography, U.S. Pat. No. 6,312,911, November 2001.

```
<160> NUMBER OF SEQ ID NOS: 7
<210> SEQ ID NO 1
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: ARTIFICIAL
<220> FEATURE:
<223> OTHER INFORMATION: ENCRYPTED MESSAGE WHEREIN DNA BASES REPRESENT
        CHARACTERS OF ASCII CHARACTER SET
<400> SEQUENCE: 1
tatgtttcta ttttac 16
<210> SEQ ID NO 2
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: ARTIFICIAL
<220> FEATURE:
<223> OTHER INFORMATION: ENCRYPTED MESSAGE WHEREIN DNA BASES REPRESENT
        CHARACTERS OF ASCII CHARACTER SET
<400> SEQUENCE: 2
ttagtacata gctatgtacc taactaca 28
<210> SEQ ID NO 3
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: ARTIFICIAL
<220> FEATURE:
<223> OTHER INFORMATION: ENCRYPTED MESSAGE WHEREIN DNA BASES REPRESENT
        CHARACTERS OF ASCII CHARACTER SET
<400> SEQUENCE: 3
ttagtacctt actagctata agctttccta cataggtatg taca 44
<210> SEQ ID NO 4
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: ARTIFICIAL
<220> FEATURE:
<223> OTHER INFORMATION: ENCRYPTED MESSAGE WHEREIN DNA BASES REPRESENT
        CHARACTERS OF ASCII CHARACTER SET
<400> SEQUENCE: 4
tatttatcta tatatttagg
CHARACTERS OF ASCII CHARACTER SET
\(<400>\) SEQUENCE: 5
tatgtttcta ttttac16
\(<210>\) SEQ ID NO 6
<211> LENGTH: 16
<212> TYPE: DNA
\(<213>\) ORGANISM
\(<220>\) FEATURE \(:\)
<223> OTHER INFORMATION: ENCRYPTED MESSAGE WHEREIN DNA BASES REPRESENT CHARACTERS OF ASCII CHARACTER SET
\(<400\rangle\) SEQUENCE : 6
tatgtttcta tttacc ..... 16
\(<210\rangle\) SEQ ID NO 7

<211> LENGTH: 7924

<212> TYPE: DNA

<213> ORGANISM: ARTIFICIAL

<220> FEATURE:

<223> OTHER INFORMATION: ENCRYPTED MESSAGE WHEREIN DNA BASES REPRESENT

    CHARACTERS OF ASCII CHARACTER SET

<400> SEQUENCE: 7
taaatattta gaaaacaatc tegtggcgat cgcgccatcg getaacctat cgatcgctgg 60
tcgegtatca acaatcgtcg gtcggtcgeg cectacggge tcttcgaacc cegtaggega 120
cacggcgcgg eggatgattg tcgccttgct acccgtggtg egcccagacc ttcgacgetc 180
ctggtacctg cgcctcatcg ttatctttgt tggagtgcaa gatggagagt ttcccggacg 240
ggtagcaagc ctgcgtaata tctccaaatg tccaaagctt attgttttca ataacgtgat 300
cctttacctg cacattagta ttatcaccag cgtgcaccca tgcgggcgcc aaccttgctg 360
gacttcgacg ccgctgtcgt tgccctctga gtgaatgatt gtgcccactg tggtggggeg 420
cotagtcggt cggtcgaggt gttcattaat ggatcgatcg acctatcgag gaatcgatcg 480
atcgatcggg cgatcgcgcc atcgatcgat cagtcgtcct acgccggctc tctctgcatt 540
tcagctcgct tatcgagagg cotgtgcaag gagccetgtt acattgggct atctaagaca 600
tggggacagt cggccgacag agtataatag gaaccacgcc taatggataa cagctttcga 660
aacccactcc agagcctgtt tactctaatt ggctccgggg ctgatggtga gggctgtgaa 720
cccggactcc cagcctaggg agtacagacc atgatcccta tgccggatta gccctagget 780
gtcacactaa gctatcctca gcgtgagcgt gtccggactt cgcaggctgt gcgtcttgag 840
tgcgcgagtg gacgggcgtg cggatccgcg cacgaacgct tcgtcgttcg gtcgtcttca 900
cgaccgccca actttccage catccaggta gccacgcaag cacatacaca tacagacatt 960
ttataatcca ctctattatc caatctttct gctgatctgt ctacctcgta ggctccctgg 1020
cttaagtgct aactcaccaa agtccegacc taccaaccct ecgtcttacc accctcctcg 1080
ccgcccggct gcectgcceg ctatgcgggc agcattgcta gccacacagc aagcatcagg 1140
gcctgcgtca acgcacgctc cgtcggccgg gccgctggtc ggtgcggagg ggggagcgag 1200
ggtaggcatg tggggtggat cgcgcttgga ctcctcggct gatttgctga ccgagcogta 1260
gaatgatgct cagaaggaga tcgagataga cacgatactt atcagtctgt gtgtatgtac 1320
gttcgtccgt gcgtgggtag gttggtcgat cgattgatct acgttaatcc cactctgcgg 1380
-continued


-continued

1. A method for storing information in DNA using a unique sequence of 4-DNA bases for representing each character of extended ASCII character set comprising:
(a) producing a synthetic DNA molecule comprising encrypted digital information that can be decoded with the use of an encryption key, flanked on each side by a primer sequence; and
(b) storing the DNA molecule in a storage DNA, which consists of a mixture of homogenous/heterogeneous DNA
2. The method of claim 1 wherein the storage DNA is genomic DNA.
3. The method of claim 2 wherein the storage DNA is human DNA or any other organism's DNA.
4. The method of claim 1 wherein the storage DNA is synthetic
5. The method of claim 1 wherein a software is provided to enable all 256 Extended ASCII characters to be defined in terms of DNA sequences.
6. The method of claim 1 wherein a minimum number of bases define each extended ASCII character.
7. The method of claim 1 wherein \(\mathbf{4}\) sequences combinations result from one base A, T, G, C.
8. The method of claim 1 wherein with 2 bases \(16(4 \times 4)\) different sequences are obtained.
9. The method of claim 1 wherein with three bases 64 \((4 \times 4 \times 4)\) distinct sequences are obtained.
10. The method of claim 1 wherein with four bases 256 ( \(4 \times 4 \times 4 \times 4\) ) distinct sequences are obtained.
11. The method of claim 1 wherein plain text/image or any digital information is encrypted in terms of DNA sequences using an encryption key software.
12. The method of claim 1 wherein the information is encrypted and fragmented in a number of segments if the information overflows the limits and cannot be synthesized in a single piece.
13. The method of claim 1 wherein synthesis of encrypted sequence(s) is carried out using DNA synthesizer.
14. The method of claim 1 wherein with a fixed number of different DNA primers sequence assigned a number, which resembles the segment position they represent.
15. The method of claim 1 wherein two tail primers are also provided, one of which resembles a continuation and other resembles termination segment.
16. The method of claim 1 wherein the DNA segment(s) is/are flanked by PCR primers at both ends with the header primers being attached at the beginning of segment and tail primers being attached at the end of the segment.
17. The method of claim 1 wherein SM DNA is mixed with complex denatured DNA strands of genomic DNA of human or other organism.
18. The method of claim 1 wherein a recipient knowing the sequences of both the primers [starting and tail] extracts the message, using PCR to isolate and amplify the encrypted DNA strand, followed by isolation and amplification of the DNA and sequencing using automated DNA sequencer, thereafter conversion of the DNA sequence obtained into digital message using encryption/decryption key.
19. A DNA molecule comprising an encrypted DNA sequence that can be decoded with the use of an encryption key, flanked on each side by polymerase chain reaction primer sequences wherein amplification of the DNA molecule and determination of the secret message DNA sequence and use of an encryption key, results in a decryption of the message.
20. A method as claimed in claim 1 where the method of encryption comprises:
a) encryption of a plain text/image or any digital information in terms of DNA sequences using encryption key, which first generates an array of 256 elements (unique 4 -base per character), representing complete ended ASCII character set values;
b) encrypting of input information character-by-character using an array by matching the ASCII values of each character with the element number of the array;
c) fragmenting the encrypted sequence into a number of segments if the information overflows the limits and cannot be synthesized in a single DNA length;
d) flanking of the encrypted segment(s) on each side with header and tail primers;
e) synthesising of encrypted sequence(s) using DNA synthesizer;
f) mixing the synthesized DNA segment(s) with complex denatured DNA strands of genomic DNA of human or other organism,
g) transporting the encrypted DNA
h) Decrypting the encrypting DNA at the recipient end.
21. A method as claimed in claim 20 where the method of decryption comprises:
a) Isolation and amplification of encrypted DNA using known primers flanked at each end by PCR method;
b) sequencing of the retrieved encrypted DNA using DNA sequencer;
c) interpreting the obtained sequence after integration of multi-segment, if required using a predetermined encryption key;```

